
nanopub
Release 1.2.11

Robin Richardson, Sven van der Burg

Oct 24, 2022

GETTING STARTED

1 Different elements of a nanopublication 3

2 Setup instructions 5

3 The nanopub test server 7

4 Publishing nanopublications 9

5 Using the nanopublication’s namespace 13

6 Setting publication info and provenance 15

7 Retracting a nanopublication 19

8 Searching the nanopub server 21

9 Fetching nanopublications 23

10 nanopub.client 25

11 nanopub.publication 29

12 nanopub.namespaces 31

13 Welcome to nanopub’s documentation! 33

Python Module Index 35

Index 37

i

ii

nanopub, Release 1.2.11

Nanopublications are a formalized and machine-readable way of communicating the smallest possible units of pub-
lishable information. This could be, for example, the outcome of a scientific study or a claim made by a particular
scientist.

Nanopublications are searchable, citable, and contain authorship and attribution information. The aim is to encourage
individual scientific results to be released in a traceable and interoperable format. As such, nanopublications are an
effective FAIR means of communicating scientific claims and results. Read more about them at http://nanopub.org/.

GETTING STARTED 1

https://www.go-fair.org/fair-principles/
http://nanopub.org/

nanopub, Release 1.2.11

2 GETTING STARTED

CHAPTER

ONE

DIFFERENT ELEMENTS OF A NANOPUBLICATION

From nanopub.org documentation (2020/12/02)

Schematic representa-
tion of a nanopub

As can be seen in this image, a nanopublication has three basic elements:

1. Assertion: The assertion is the main content of a nanopublication in the form of an small atomic unit of infor-
mation

2. Provenance: This part describes how the assertion above came to be. This can include the scientific methods
that were used to generate the assertion, for example a reference to the kind of study that was performed and its

3

http://nanopub.org/wordpress/?page_id=65

nanopub, Release 1.2.11

parameters.

3. Publication Info: This part contains metadata about the nanopublication as a whole, such as when and by whom
it was created and the license terms for its reuse.

4 Chapter 1. Different elements of a nanopublication

CHAPTER

TWO

SETUP INSTRUCTIONS

2.1 Install nanopub library

Install using pip:

pip install nanopub

2.2 Nanopub-java dependency

The nanopub library currently uses the nanopub-java tool for signing and publishing new nanopublications. This is
automatically installed by the library.

2.2.1 Java

If you want to publish nanopublications you need to have the java runtime environment installed, this might already be
installed on your system. You can check this for unix:

java --version

Or follow these instructions for windows

2.2.2 Installing java

If java is not installed follow these instructions

2.3 Setup for users new to python

We recommend using anaconda to install python and manage python dependencies

5

https://github.com/Nanopublication/nanopub-java
http://kb.mit.edu/confluence/pages/viewpage.action?pageId=6750761
https://www.java.com/en/download/help/index_installing.html
https://www.anaconda.com/products/individual

nanopub, Release 1.2.11

2.4 Setup your profile

To publish to the nanopub server you need to setup your profile (note that you can use fetch and search functionality
without a profile). This allows the nanopub server to identify you.

Run the following interactive command:

setup_nanopub_profile

This will setup the following:

2.4.1 Stored profile

A local version of the profile will be stored in the nanopub user config dir (by default HOMEDIR/.nanopub/profile.
yml)

2.4.2 RSA keys

It will add and store RSA keys to sign your nanopublications. By default they are stored under HOMEDIR/.nanopub/
id_rsa and HOMEDIR/.nanopub/id_rsa.pub.

2.4.3 ORCID iD

This includes your ORCID iD (i.e. https://orcid.org/0000-0000-0000-0000). If you don’t have an ORCID iD yet, you
need to register. We use the ORCID iD to automatically add as author to the provenance of any nanopublication you
will publish using this library.

2.4.4 Introductory nanopublication

We encourage you to make use of setup_nanopub_profile’s option to publish your profile to the nanopub servers.
This links your ORCID iD to your RSA key, thereby making all your publications linkable to you. Here is an example
introductory nanopublicaiton.

The link to this nanopublication is also stored in your profile.

6 Chapter 2. Setup instructions

https://orcid.org/
https://orcid.org/register
http://purl.org/np/RAy1CYBfBYFd_TFI8Z_jr3taf6fB9u-grqsKyLzTmMvQI
http://purl.org/np/RAy1CYBfBYFd_TFI8Z_jr3taf6fB9u-grqsKyLzTmMvQI

CHAPTER

THREE

THE NANOPUB TEST SERVER

Throughout this documentation we make use of the nanopub test server by setting use_test_server=True when
instantiating NanopubClient:

>>> from nanopub import NanopubClient
>>> client = NanopubClient(use_test_server=True)

This will search and fetch from, and publish to the nanopub test server.

When learning about nanopub using the testserver is a good idea, because:

• You are free to experiment with publishing without polluting the production server.

• You can draft a publication and know exactly what it will look like on the nanopub server without polluting the
production server.

• When searching (and to a lesser extent fetching) you are not putting an unnecessary load on the production server.

3.1 Test purl URIs do not point to the test server

There is one caveat when using the test server that can be confusing: The purl URI (for example:
http://purl.org/np/RA71u9tYPd7ZQifE_6hXjqVim6pkweuvjoi-8ehvLvzg8) points to the nanopub production server
resulting in a 404 page not found error.

A manual workaround is:

1. Open http://purl.org/np/RA71u9tYPd7ZQifE_6hXjqVim6pkweuvjoi-8ehvLvzg8 in your browser

2. Notice that the URL changed to http://server.nanopubs.lod.labs.vu.nl/RA71u9tYPd7ZQifE_6hXjqVim6pkweuvjoi-
8ehvLvzg8.

3. Replace ‘server’ with ‘test-server’: http://test-server.nanopubs.lod.labs.vu.nl/RA71u9tYPd7ZQifE_6hXjqVim6pkweuvjoi-
8ehvLvzg8.

NB: NanopubClient.fetch() does this for you if use_test_server=True.

7

http://test-server.nanopubs.lod.labs.vu.nl/
http://test-server.nanopubs.lod.labs.vu.nl/
http://server.nanopubs.lod.labs.vu.nl/RA71u9tYPd7ZQifE_6hXjqVim6pkweuvjoi-8ehvLvzg8
http://server.nanopubs.lod.labs.vu.nl/
http://purl.org/np/RA71u9tYPd7ZQifE_6hXjqVim6pkweuvjoi-8ehvLvzg8
http://server.nanopubs.lod.labs.vu.nl/RA71u9tYPd7ZQifE_6hXjqVim6pkweuvjoi-8ehvLvzg8
http://server.nanopubs.lod.labs.vu.nl/RA71u9tYPd7ZQifE_6hXjqVim6pkweuvjoi-8ehvLvzg8
http://test-server.nanopubs.lod.labs.vu.nl/RA71u9tYPd7ZQifE_6hXjqVim6pkweuvjoi-8ehvLvzg8
http://test-server.nanopubs.lod.labs.vu.nl/RA71u9tYPd7ZQifE_6hXjqVim6pkweuvjoi-8ehvLvzg8

nanopub, Release 1.2.11

8 Chapter 3. The nanopub test server

CHAPTER

FOUR

PUBLISHING NANOPUBLICATIONS

The nanopub library provides an intuitive API that makes publishing nanopublications much easier. The rationale is
that you often do not want to worry about the details of composing the RDF that is often the same in each nanopubli-
cation. Instead you should focus on the content of your nanopublication: the assertion.

4.1 Prerequisits for publishing

Before you can publish you should setup your profile

4.2 Quickly publishing nanopublications using claim

You can quickly publish a nanopublicaiton with a single simple statement using the claim method:

>>> from nanopub import NanopubClient

>>> # Create the client (we use use_test_server=True to point to the test server)
>>> client = NanopubClient(use_test_server=True)

>>> # Publish a simple statement to the server
>>> client.claim('All cats are gray')
Published to http://purl.org/np/RA47eJP2UBJCWuJ324c6Qw0OwtCb8wCrprwSk39am7xck

View the resulting nanopublication here.

The generated RDF makes use of the Hypotheses and Claims Ontology (HYCL)

This is the assertion part of the nanopublication, denoting the statement:

@prefix hycl: <http://purl.org/petapico/o/hycl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix sub: <http://purl.org/np/RA47eJP2UBJCWuJ324c6Qw0OwtCb8wCrprwSk39am7xck#> .

sub:assertion {
sub:mystatement a hycl:Statement ;

rdfs:label "All cats are gray" .
}

The provenance part of the nanopublication denotes that the ORCID iD from the profile claimed the statement:

9

http://purl.org/np/RA47eJP2UBJCWuJ324c6Qw0OwtCb8wCrprwSk39am7xck
http://purl.org/petapico/o/hycl

nanopub, Release 1.2.11

@prefix hycl: <http://purl.org/petapico/o/hycl#> .
@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix sub: <http://purl.org/np/RA47eJP2UBJCWuJ324c6Qw0OwtCb8wCrprwSk39am7xck#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

sub:provenance {
sub:assertion prov:generatedAtTime "2020-12-01T10:39:09.427920"^^xsd:dateTime ;

prov:wasAttributedTo <https://orcid.org/0000-0000-0000-0000> .

<https://orcid.org/0000-0000-0000-0000> hycl:claims sub:mystatement .
}

4.3 A simple recipe for publishing RDF triples

You can use Publication objects to easily publish nanopublications with your assertion (think of the assertion as the
content of your nanopublication).

This is a 3-step recipe that works for most cases:

1. Construct a desired assertion using rdflib.

2. Make a Publication object using the assertion, making use of Publication.from_assertion().

3. Publish the Publication object using NanopubClient.publish().

Here is a minimal example:

>>> import rdflib
>>> from nanopub import NanopubClient, Publication
>>>
>>> # Create the client (we use use_test_server=True to point to the test server)
>>> client = NanopubClient(use_test_server=True)
>>>
>>> # 1. construct a desired assertion (a graph of RDF triples) using rdflib
>>> my_assertion = rdflib.Graph()
>>> my_assertion.add((rdflib.URIRef('www.example.org/timbernerslee'),
>>> rdflib.RDF.type,
>>> rdflib.FOAF.Person))
>>>
>>> # 2. Make a Publication object with this assertion
>>> publication = Publication.from_assertion(assertion_rdf=my_assertion)
>>>
>>> # 3. Publish the Publication object.
>>> publication_info = client.publish(publication)
Published to http://purl.org/np/RAfk_zBYDerxd6ipfv8fAcQHEzgZcVylMTEkiLlMzsgwQ

View the resulting nanopublication here.

This is the resulting assertion part of the nanopublication:

@prefix sub: <http://purl.org/np/RAfk_zBYDerxd6ipfv8fAcQHEzgZcVylMTEkiLlMzsgwQ#> .

sub:assertion {
(continues on next page)

10 Chapter 4. Publishing nanopublications

https://rdflib.readthedocs.io/en/stable/
http://purl.org/np/RAfk_zBYDerxd6ipfv8fAcQHEzgZcVylMTEkiLlMzsgwQ

nanopub, Release 1.2.11

(continued from previous page)

<https://www.example.org/timbernerslee> a <http://xmlns.com/foaf/0.1/Person> .
}

The library automatically adds relevant RDF triples for the provenance part of the nanopublication:

@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix sub: <http://purl.org/np/RAfk_zBYDerxd6ipfv8fAcQHEzgZcVylMTEkiLlMzsgwQ#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

sub:provenance {
sub:assertion prov:generatedAtTime "2020-12-01T10:44:32.367084"^^xsd:dateTime .

}

as well as for the publication info part of the nanopublication:

@prefix npx: <http://purl.org/nanopub/x/> .
@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix sub: <http://purl.org/np/RAfk_zBYDerxd6ipfv8fAcQHEzgZcVylMTEkiLlMzsgwQ#> .
@prefix this: <http://purl.org/np/RAfk_zBYDerxd6ipfv8fAcQHEzgZcVylMTEkiLlMzsgwQ> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

sub:pubInfo {
sub:sig npx:hasAlgorithm "RSA" ;

npx:hasPublicKey "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCmso7vmRO/
→˓Cp4Pt0RkJJkV5qfc1WFYU/jMtkdxxb5+lfIVXNV97XQnM1Tj4fkb/
→˓W6jkP6fHl8mj8Q7hl7VgUnQ6I+B7cMGpxW9Z8Br+JNx8DPMMt08VCH5+JMENPRKl91r7rF/
→˓YPWCAgL9eqXSixCNMNAj5RBmMTQoPuRkpgmt1wIDAQAB" ;

npx:hasSignature "aPZMJ3Md6X1PHYvXJiNoRUni9+1oS9faCfiPRRCrj4K/uZPN0J/
→˓znjxGuCUxoZRJ4b4RfSxmHFGRKfCFusJX+7Y3xuxYx4GYHzYhBciK7T5pO02V4w6sdwHLKd5E+Wcl0PTr2t3lEjq6yzY98wEXlZLAbaRDBJvzpg5xORifQDw=
→˓" ;

npx:hasSignatureTarget this: .

this: prov:generatedAtTime "2020-12-01T10:44:32.367084"^^xsd:dateTime ;
prov:wasAttributedTo <https://orcid.org/0000-0000-0000-0000> .

}

4.3. A simple recipe for publishing RDF triples 11

nanopub, Release 1.2.11

12 Chapter 4. Publishing nanopublications

CHAPTER

FIVE

USING THE NANOPUBLICATION’S NAMESPACE

In a nanopublication you often want to refer to a concept that is not defined somewhere on the WWW. In that case
it makes sense to make use of the namespace of the nanopublication itself, see for example this assertion that uses
nanopub-uri#timbernerslee to refer to the concept Tim Berner’s Lee.

@prefix sub: <http://purl.org/np/RA_j6TPcnoQJ_XkISjugTgaRsFGLhpbZCC3mE7fXs0REI#> .

sub:assertion {
sub:timbernerslee a <http://xmlns.com/foaf/0.1/Person> .

}

5.1 Using blank nodes

But how do you make use of the nanopublication’s namespace if you do not have access to the published nanopublication
URI yet? We solve that by making use of blank nodes.

Upon publication, any blank nodes in the rdf graph are replaced with the nanopub’s URI, with the blank node name
as a fragment. For example, if the blank node is called ‘timbernerslee’, that would result in a URI composed of the
nanopub’s (base) URI, followed by #timbernslee. We can thus use blank nodes to refer to new concepts, making use
of the namespace of the to-be-published URI.

An example:

>>> import rdflib
>>> from nanopub import Publication, NanopubClient
>>>
>>> my_assertion = rdflib.Graph()
>>>
>>> # We want to introduce a new concept in our publication: Tim Berners Lee
>>> tim = rdflib.BNode('timbernerslee')
>>>
>>> # We assert that he is a person
>>> my_assertion.add((tim, rdflib.RDF.type, rdflib.FOAF.Person))
>>>
>>> # And create a publication object for this assertion
>>> publication = Publication.from_assertion(assertion_rdf=my_assertion)
>>>
>>> # Let's publish this to the test server
>>> client = NanopubClient(use_test_server=True)
>>> client.publish(publication)
Published to http://purl.org/np/RAdaZsPRcY5usXFKwSBfz9g-HOu-Bo1XmmhQc4g7uESgU

13

nanopub, Release 1.2.11

View the full nanopublication here.

As you can see in the assertion, the ‘timbernerslee’ blank node is replaced with a uri in the nanopublication’s namespace:

@prefix sub: <http://purl.org/np/RAdaZsPRcY5usXFKwSBfz9g-HOu-Bo1XmmhQc4g7uESgU#> .

sub:assertion {
sub:timbernerslee a <http://xmlns.com/foaf/0.1/Person> .

}

5.2 Introducing a concept

You can optionally specify that the Publication introduces a particular concept using blank nodes. The pubinfo graph
will note that this nanopub npx:introduces the concept. The concept should be a blank node (rdflib.term.BNode), and
is converted to a URI derived from the nanopub’s URI with a fragment (#) made from the blank node’s name.

An example:

>>> import rdflib
>>> from nanopub import Publication, NanopubClient
>>>
>>> my_assertion = rdflib.Graph()
>>>
>>> # We want to introduce a new concept in our publication: Tim Berners Lee
>>> tim = rdflib.BNode('timbernerslee')
>>>
>>> # We assert that he is a person
>>> my_assertion.add((tim, rdflib.RDF.type, rdflib.FOAF.Person))
>>>
>>> # We can create a publication introducing this new concept
>>> publication = Publication.from_assertion(assertion_rdf=my_assertion,
>>> introduces_concept=tim)
>>>
>>> # Let's publish this to the test server
>>> client = NanopubClient(use_test_server=True)
>>> client.publish(publication)
Published to http://purl.org/np/RAq9gFEgxlOyG9SSDZ5DmBbyGet2z6pkrdWXIVYa6U6qI
Published concept to http://purl.org/np/RAq9gFEgxlOyG9SSDZ5DmBbyGet2z6pkrdWXIVYa6U6qI
→˓#timbernerslee

Note that NanopubClient.publish() now also prints the published concept URI.

View the full nanopublication here.

The publication info of the nanopublication denotes that this nanopublication introduces the ‘timbernerslee’ concept:

@prefix npx: <http://purl.org/nanopub/x/> .
@prefix sub: <http://purl.org/np/RAq9gFEgxlOyG9SSDZ5DmBbyGet2z6pkrdWXIVYa6U6qI#> .
@prefix this: <http://purl.org/np/RAq9gFEgxlOyG9SSDZ5DmBbyGet2z6pkrdWXIVYa6U6qI> .

sub:pubInfo {
this: npx:introduces sub:timbernerslee .

}

14 Chapter 5. Using the nanopublication’s namespace

http://purl.org/np/RAdaZsPRcY5usXFKwSBfz9g-HOu-Bo1XmmhQc4g7uESgU
http://purl.org/np/RAq9gFEgxlOyG9SSDZ5DmBbyGet2z6pkrdWXIVYa6U6qI

CHAPTER

SIX

SETTING PUBLICATION INFO AND PROVENANCE

Here we show how you can control the publication info and provenance parts of the nanopublication.

6.1 Specifying where the nanopublication is derived from

You can specify that the nanopub’s assertion is derived from another URI (such as an existing nanopublication):

import rdflib
from nanopub import Publication

my_assertion = rdflib.Graph()
my_assertion.add((rdflib.term.BNode('timbernserslee'), rdflib.RDF.type, rdflib.FOAF.
→˓Person))

publication = Publication.from_assertion(
assertion_rdf=my_assertion,
derived_from=rdflib.URIRef('http://www.example.org/another-nanopublication'))

Note that derived_from may also be passed a list of URIs.

The provenance part of the publication will denote:

@prefix sub: <http://purl.org/nanopub/temp/mynanopub#> .
@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

:provenance {
sub:assertion prov:wasDerivedFrom <http://www.example.org/another-nanopublication> .

}

15

nanopub, Release 1.2.11

6.2 Attributing the assertion to someone

You can attribute the assertion to someone by specifying the assertion_attributed_to argument:

import rdflib
from nanopub import Publication

my_assertion = rdflib.Graph()
my_assertion.add((rdflib.term.BNode('timbernserslee'), rdflib.RDF.type, rdflib.FOAF.
→˓Person))

publication = Publication.from_assertion(
assertion_rdf=my_assertion,
assertion_attributed_to=rdflib.URIRef('https://orcid.org/0000-0000-0000-0000'))

The provenance part of the publication will denote:

@prefix : <http://purl.org/nanopub/temp/mynanopub#> .
@prefix prov: <http://www.w3.org/ns/prov#> .

:provenance {
:assertion prov:wasAttributedTo <https://orcid.org/0000-0000-0000-0000> .

}

Note: Often the assertion should be attributed to yourself. Instead of passing your ORCID iD to
assertion_attributed_to, you can easily tell nanopub to attribute the assertion to the ORCID iD in your profile
by setting attribute_assertion_to_profile=True.

6.3 Specifying custom provenance triples

You can add your own triples to the provenance graph of the nanopublication by passing them in an rdflib.Graph
object to the provenance_rdf argument:

import rdflib
from nanopub import namespaces, Publication

my_assertion = rdflib.Graph()
my_assertion.add((rdflib.term.BNode('timbernserslee'), rdflib.RDF.type, rdflib.FOAF.
→˓Person))

provenance_rdf = rdflib.Graph()
provenance_rdf = provenance_rdf.add((rdflib.term.BNode('timbernserslee'),

namespaces.PROV.actedOnBehalfOf,
rdflib.term.BNode('markzuckerberg')))

publication = Publication.from_assertion(assertion_rdf=my_assertion,
provenance_rdf=provenance_rdf)

16 Chapter 6. Setting publication info and provenance

nanopub, Release 1.2.11

6.4 Specifying custom publication info triples

You can add your own triples to the publication info graph of the nanopublication by passing them in an rdflib.Graph
object to the pubinfo_rdf argument:

import rdflib
from nanopub import namespaces, Publication

my_assertion = rdflib.Graph()
my_assertion.add((rdflib.term.BNode('timbernserslee'), rdflib.RDF.type, rdflib.FOAF.
→˓Person))

pubinfo_rdf = rdflib.Graph()
pubinfo_rdf = pubinfo_rdf.add((rdflib.term.BNode('activity'),

rdflib.RDF.type,
namespaces.PROV.Activity))

publication = Publication.from_assertion(assertion_rdf=my_assertion,
pubinfo_rdf=pubinfo_rdf)

6.4. Specifying custom publication info triples 17

nanopub, Release 1.2.11

18 Chapter 6. Setting publication info and provenance

CHAPTER

SEVEN

RETRACTING A NANOPUBLICATION

A nanopublication is persistent, you can never edit nor delete it. You can however retract a nanopublication. This is done
by publishing a new nanopublication that states that you retract the original publication. You can use NanopubClient.
retract():

>>> from nanopub import NanopubClient
>>> client = NanopubClient(use_test_server=True)
>>> client.retract('http://purl.org/np/RAfk_zBYDerxd6ipfv8fAcQHEzgZcVylMTEkiLlMzsgwQ')
Published to http://purl.org/np/RAv75Xhhz5jv--Nnu9RDqIGy2xHr74REGC4vtOSxrwX4c

View the full retraction nanopublication here.

The assertion states that the researcher (denoted by the ORCID iD from your profile) retracts the provided nanopubli-
cation:

@prefix npx: <http://purl.org/nanopub/x/> .
@prefix sub: <http://purl.org/np/RAv75Xhhz5jv--Nnu9RDqIGy2xHr74REGC4vtOSxrwX4c#> .

sub:assertion {
<https://orcid.org/0000-0000-0000-0000> npx:retracts <http://purl.org/np/RAfk_

→˓zBYDerxd6ipfv8fAcQHEzgZcVylMTEkiLlMzsgwQ> .
}

By default nanopublications that have a valid retraction do not show up in search results. A valid retraction is a retraction
that is signed with the same public key as the nanopublication that it retracts.

7.1 Retracting a nanopublication that is not yours

By default we do not retract nanopublications that are not yours (i.e. signed with another public key). If you try to do
this it will trigger an AssertionError:

>>> from nanopub import NanopubClient
>>> client = NanopubClient(use_test_server=True)
>>> not_my_nanopub_uri = 'http://purl.org/np/RAr6rs7o8Sr5OGCs0127ah37DYUvgiWzjOuCvV-
→˓OSusAk'
>>> client.retract(not_my_nanopub_uri)

AssertionError Traceback (most recent call last)
<ipython-input-30-7141d9e82fbc> in <module>

1 not_my_nanopub_uri = 'http://purl.org/np/RAr6rs7o8Sr5OGCs0127ah37DYUvgiWzjOuCvV-
→˓OSusAk'

(continues on next page)

19

http://purl.org/np/RAv75Xhhz5jv--Nnu9RDqIGy2xHr74REGC4vtOSxrwX4c

nanopub, Release 1.2.11

(continued from previous page)

----> 2 client.retract(not_my_nanopub_uri)

~/projects/fair-workflows/nanopub/nanopub/client.py in retract(self, uri, force)
265 """
266 if not force:

--> 267 self._check_public_keys_match(uri)
268 assertion_rdf = rdflib.Graph()
269 orcid_id = profile.get_orcid_id()

~/projects/fair-workflows/nanopub/nanopub/client.py in _check_public_keys_match(self,␣
→˓uri)

245 f'this one: {their_public_key}')
246 if their_public_key != profile.get_public_key():

--> 247 raise AssertionError('The public key in your profile does not␣
→˓match the public key'

248 'that the publication that you want to␣
→˓retract is signed '

249 'with. Use force=True to force retraction␣
→˓anyway.')

AssertionError: The public key in your profile does not match the public keythat the␣
→˓publication that you want to retract is signed with. Use force=True to force␣
→˓retraction anyway.

We can use force=True to override this behavior:

client.retract(not_my_nanopub_uri, force=True)

7.2 Find retractions of a given nanopublication

You can find out whether a given publication is retracted and what the nanopublications are that retract it using
NanopubClient.find_retractions_of:

>>> from nanopub import NanopubClient
>>> client = NanopubClient(use_test_server=True)
>>> # This URI has 1 retraction:
>>> client.find_retractions_of('http://purl.org/np/RAirauh-vy5f7UJEMTm08C5bh5pnWD-abb-
→˓qk3fPYWCzc')
['http://purl.org/np/RADjlGIB8Vqt7NbG1kqzw-4aIV_k7nyIRirMhPKEYVSlc']
>>> # This URI has no retractions
>>> client.find_retractions_of('http://purl.org/np/
→˓RAeMfoa6I05zoUmK6sRypCIy3wIpTgS8gkum7vdfOamn8')
[]

20 Chapter 7. Retracting a nanopublication

CHAPTER

EIGHT

SEARCHING THE NANOPUB SERVER

The NanopubClient provides methods for searching the nanopub server. It provides an (uncomplete) mapping to the
nanopub server grlc endpoint.

8.1 Text search

Search for all nanopublications containing some text using NanopubClient.find_nanopubs_with_text()

from nanopub import NanopubClient
client = NanopubClient()
results = client.find_nanopubs_with_text('fair')

8.2 Triple pattern search

Search for nanopublications whose assertions contain triples that match a specific pattern.

from nanopub import NanopubClient
client = NanopubClient()
Search for nanopublications whose assertions contain triples that are␣
→˓```rdf:Statement```s.
results = client.find_nanopubs_with_pattern(

pred='http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
obj='http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement')

8.3 Search on introduced concept

Search for any nanopublications that introduce a concept of the given type, that contain text with the given search term.

from nanopub import NanopubClient
client = NanopubClient()
Search for nanopublications that introduce a concept that is a ```p-plan:Step```.
results = client.find_things('http://purl.org/net/p-plan#Step')

21

http://grlc.nanopubs.lod.labs.vu.nl/api/local/local

nanopub, Release 1.2.11

8.4 Interpreting search results

Each search method returns a generator of dicts depicting matching nanopublications.

Each dict has the following key-value pairs:

• date: The date and time the nanopublication was created.

• description: A description of the nanopublication that was parsed from the nanopublication RDF.

• np: The URI of the matching nanopublication.

Example results (from NanopubClient.find_nanopubs_with_text('fair')):

>>> print(list(results))
[{'date': '2020-05-01T08:05:25.575Z',
'description': 'The primary objective of the VODAN Implementation Network is '

'to showcase the creation and deployment of FAIR data related '
'to COVID-19',

'np': 'http://purl.org/np/RAdDKjIGPt_2mE9oJtB3YQX6wGGdCC8ZWpkxEIoHsxOjE'},
{'date': '2020-05-14T09:34:53.554Z',
'description': 'FAIR IN community',
'np': 'http://purl.org/np/RAPE0A-NrIZDeX3pvFJr0uHshocfXuUj8n_J3BkY0sMuU'}]

8.5 Returning retracted publications in search

By default nanopublications that have a valid retraction do not show up in search results. A valid retraction is a retraction
that is signed with the same public key as the nanopublication that it retracts. You can toggle this behavior with the
filter_retracted parameter, here is an example with NanopubClient.find_nanopubs_with_text:

from nanopub import NanopubClient
client = NanopubClient()
Search for nanopublications containing the text fair, also returning retracted␣
→˓publications.
results = client.find_nanopubs_with_text('fair', filter_retracted=False)

8.6 Filtering search results for a particular publication key

You can filter search results to publications that are signed with a specific publication key (effectively filtering on
publications from a single author). You use the pubkey argument for that. Here is an example with NanopubClient.
find_nanopubs_with_text:

from nanopub import NanopubClient, profile
Search for nanopublications containing the text 'test',
filtering on publications signed with my publication key.
client = NanopubClient(use_test_server=True)
my_public_key = profile.get_public_key()
results = client.find_nanopubs_with_text('test', pubkey=my_public_key)

22 Chapter 8. Searching the nanopub server

CHAPTER

NINE

FETCHING NANOPUBLICATIONS

You can fetch nanopublications from the nanopub server using NanopubClient.fetch(). The resulting object is a
Publication object that you can use to inspect the nanopublication.

from nanopub import NanopubClient

Fetch the nanopublication at the specified URI
client = NanopubClient()
publication = client.fetch('http://purl.org/np/
→˓RApJG4fwj0szOMBMiYGmYvd5MCtRle6VbwkMJUb1SxxDM')

Print the RDF contents of the nanopublication
print(publication)

Iterate through all triples in the assertion graph
for s, p, o in publication.assertion:

print(s, p, o)

Iterate through the publication info
for s, p, o in publication.pubinfo:

print(s, p, o)

Iterate through the provenance graph
for s, p, o in publication.provenance:

print(s,p,o)

See the concept that is introduced by this nanopublication (if any)
print(publication.introduces_concept)

23

nanopub, Release 1.2.11

24 Chapter 9. Fetching nanopublications

CHAPTER

TEN

NANOPUB.CLIENT

This module includes a client for the nanopub server.

class nanopub.client.NanopubClient(use_test_server=False)
Provides utility functions for searching, creating and publishing RDF graphs as assertions in a nanopublication.

Parameters
use_test_server (bool) – Toggle using the test nanopub server.

claim(statement_text: str)
Quickly claim a statement.

Constructs statement triples around the provided text following the Hypotheses and Claims Ontology (http:
//purl.org/petapico/o/hycl).

Parameters
statement_text (str) – the text of the statement, example: ‘All cats are grey’

Returns
Publication info with: ‘nanopub_uri’: the URI of the published nanopublication, ‘con-
cept_uri’: the URI of the introduced concept (if applicable)

Return type
dict of str

fetch(uri: str)
Fetch nanopublication

Download the nanopublication at the specified URI.

Parameters
uri (str) – The URI of the nanopublication to fetch.

Returns
a Publication object representing the nanopublication.

Return type
Publication

find_nanopubs_with_pattern(subj: Optional[str] = None, pred: Optional[str] = None, obj: Optional[str]
= None, filter_retracted: bool = True, pubkey: Optional[str] = None)

Pattern search.

Search the nanopub servers for any nanopubs matching the given RDF pattern. You can leave parts of the
triple to match anything by not specifying subj, pred, or obj arguments.

Parameters

• subj (str) – URI of the subject that you want to match triples on.

25

http://purl.org/petapico/o/hycl
http://purl.org/petapico/o/hycl

nanopub, Release 1.2.11

• pred (str) – URI of the predicate that you want to match triples on.

• obj (str) – URI of the object that you want to match triples on.

• pubkey (str) – Public key that the matching nanopubs should be signed with

• filter_retracted (bool) – Toggle filtering for publications that are retracted. Default
is True, returning only publications that are not retracted.

Yields
dicts depicting matching nanopublications. Each dict holds: ‘np’: the nanopublication uri,
‘date’: date of creation of the nanopublication, ‘description’: A description of the nanopub-
lication (if found in RDF).

find_nanopubs_with_text(text: str, pubkey: Optional[str] = None, filter_retracted: bool = True)
Text search.

Search the nanopub servers for any nanopubs matching the given search text.

Parameters

• text (str) – The text to search on

• pubkey (str) – Public key that the matching nanopubs should be signed with

• filter_retracted (bool) – Toggle filtering for publications that are retracted. Default
is True, returning only publications that are not retracted.

Yields
dicts depicting matching nanopublications. Each dict holds: ‘np’: the nanopublication uri,
‘date’: date of creation of the nanopublication, ‘description’: A description of the nanopub-
lication (if found in RDF).

find_retractions_of(source: Union[str, Publication], valid_only=True)→ List[str]
Find retractions of given URI

Find all nanopublications that retract a certain nanopublication.

Parameters

• source (str or nanopub.Publication) – URI or Publication object to find retractions
for

• valid_only (bool) – Toggle returning only valid retractions, i.e. retractions that are
signed with the same public key as the publication they retract. Default is True.

Returns
List of uris that retract the given URI

find_things(type: str, searchterm: str = ' ', pubkey: Optional[str] = None, filter_retracted: bool = True)
Search things (experimental).

Search for any nanopublications that introduce a concept of the given type, that contain text with the given
search term.

Parameters

• type (str) – A URI denoting the type of the introduced concept

• searchterm (str) – The term that you want to search on

• pubkey (str) – Public key that the matching nanopubs should be signed with

• filter_retracted (bool) – Toggle filtering for publications that are retracted. Default
is True, returning only publications that are not retracted.

26 Chapter 10. nanopub.client

nanopub, Release 1.2.11

Yields
dicts depicting matching nanopublications. Each dict holds: ‘np’: the nanopublication uri,
‘date’: date of creation of the nanopublication, ‘description’: A description of the nanopub-
lication (if found in RDF).

publish(publication: Publication)
Publish a Publication object.

Publish Publication object to the nanopub server. It uses nanopub_java commandline tool to sign the nanop-
ublication RDF with the RSA key in the profile and then publish.

Parameters
publication (Publication) – Publication object to publish.

Returns
Publication info with: ‘nanopub_uri’: the URI of the published nanopublication, ‘con-
cept_uri’: the URI of the introduced concept (if applicable)

Return type
dict of str

retract(uri: str, force=False)
Retract a nanopublication.

Publish a retraction nanpublication that declares retraction of the nanopublication that corresponds to the
‘uri’ argument.

Parameters

• uri (str) – The uri pointing to the to-be-retracted nanopublication

• force (bool) – Toggle using force to retract, this will even retract the nanopublication if
it is signed with a different public key than the one in the user profile.

Returns
Publication info with: ‘nanopub_uri’: the URI of the published nanopublication, ‘con-
cept_uri’: the URI of the introduced concept (if applicable)

Return type
dict of str

27

nanopub, Release 1.2.11

28 Chapter 10. nanopub.client

CHAPTER

ELEVEN

NANOPUB.PUBLICATION

This module holds code for representing the RDF of nanopublications, as well as helper functions to make handling
RDF easier.

class nanopub.publication.Publication(rdf: ConjunctiveGraph, source_uri: Optional[str] = None)
Representation of the rdf that comprises a nanopublication

rdf

The full RDF graph of this nanopublication

Type
rdflib.ConjunctiveGraph

assertion

The part of the graph describing the assertion.

Type
rdflib.Graph

pubinfo

The part of the graph describing the publication information.

Type
rdflib.Graph

provenance

The part of the graph describing the provenance.

Type
rdflib.Graph

source_uri

The URI of the nanopublication that this Publication represents (if applicable)

Type
str

introduces_concept

The concept that is introduced by this Publication.

signed_with_public_key

The public key that this Publication is signed with.

is_test_publication

Whether this is a test publication

29

nanopub, Release 1.2.11

classmethod from_assertion(assertion_rdf: Graph, introduces_concept: Optional[BNode] = None,
derived_from=None, assertion_attributed_to=None,
publication_attributed_to=None, attribute_assertion_to_profile: bool =
False, attribute_publication_to_profile: bool = True, provenance_rdf:
Optional[Graph] = None, pubinfo_rdf: Optional[Graph] = None,
add_generated_at_time: bool = True)

Construct Nanopub object based on given assertion.

Any blank nodes in the rdf graph are replaced with the nanopub’s URI, with the blank node name as a
fragment. For example, if the blank node is called ‘step’, that would result in a URI composed of the
nanopub’s (base) URI, followed by #step.

Parameters

• assertion_rdf (rdflib.Graph) – The assertion RDF graph.

• introduces_concept (rdflib.term.BNode) – the pubinfo graph will note that this
nanopub npx:introduces the concept. The concept should be a blank node (rd-
flib.term.BNode), and is converted to a URI derived from the nanopub’s URI with a frag-
ment (#) made from the blank node’s name.

• derived_from (rdflib.URIRef, str, or list) – Add a triple to the provenance
graph stating that this nanopub’s assertion prov:wasDerivedFrom the given URI. If a list
of URIs is passed, a provenance triple will be generated for each.

• assertion_attributed_to (rdflib.URIRef or str) – the provenance graph will
note that this nanopub’s assertion prov:wasAttributedTo the given URI.

• publication_attributed_to (rdflib.URIRef or str) – the pubInfo graph will
note that this nanopub itself prov:wasAttributedTo the given URI. If ‘None’ then this de-
faults to using the ORCID id provided in the user’s profile.

• attribute_assertion_to_profile (bool) – Attribute the assertion to the ORCID iD
in the profile

• attribute_publication_to_profile (bool) – Attribute the publication to the OR-
CID iD in the profile

• provenance_rdf (rdflib.Graph) – RDF triples to be added to provenance graph of the
nanopublication. This is optional, for most cases the defaults will be sufficient.

• pubinfo_rdf (rdflib.Graph) – RDF triples to be added to the publication info graph
of the nanopublication. This is optional, for most cases the defaults will be sufficient.

• add_generated_at_time (bool) – Add prov:generatedAtTime in the pubinfo and prov
graphs

nanopub.publication.replace_in_rdf(rdf: Graph, oldvalue, newvalue)
Replace values in RDF.

Replace all subjects or objects matching oldvalue with newvalue. Replaces in place.

Parameters

• rdf (rdflib.Graph) – The RDF graph in which we want to replace nodes

• oldvalue – The value to be replaced

• newvalue – The value to replace with

30 Chapter 11. nanopub.publication

CHAPTER

TWELVE

NANOPUB.NAMESPACES

This module holds handy namespaces that are often used in nanopublications.

nanopub.namespaces.AUTHOR = Namespace('http://purl.org/person#')

Namespace for http://purl.org/person#

nanopub.namespaces.HYCL = Namespace('http://purl.org/petapico/o/hycl#')

Namespace for http://purl.org/petapico/o/hycl#

nanopub.namespaces.NP = Namespace('http://www.nanopub.org/nschema#')

Namespace for http://www.nanopub.org/nschema#

nanopub.namespaces.NPX = Namespace('http://purl.org/nanopub/x/')

Namespace for http://purl.org/nanopub/x/

nanopub.namespaces.ORCID = Namespace('https://orcid.org/')

Namespace for https://orcid.org/

nanopub.namespaces.PROV = Namespace('http://www.w3.org/ns/prov#')

Namespace for http://www.w3.org/ns/prov#

31

nanopub, Release 1.2.11

32 Chapter 12. nanopub.namespaces

CHAPTER

THIRTEEN

WELCOME TO NANOPUB’S DOCUMENTATION!

The nanopub library provides a high-level, user-friendly python interface for searching, publishing and retracting
nanopublications.

Nanopublications are a formalized and machine-readable way of communicating the smallest possible units of publish-
able information. See What are nanopublications? for more information.

13.1 Setup

Install using pip:

pip install nanopub

To publish to the nanopub server you need to setup your profile. This allows the nanopub server to identify you. Run
the following interactive command:

setup_nanopub_profile

This will add and store RSA keys to sign your nanopublications, publish a nanopublication with your name and ORCID
iD to declare that you are using using these RSA keys, and store your ORCID iD to automatically add as author to the
provenance of any nanopublication you will publish using this library.

13.2 Quick Start

13.2.1 Publishing nanopublications

import rdflib
from nanopub import Publication, NanopubClient

Create the client (we use use_test_server=True to point to the test server)
client = NanopubClient(use_test_server=True)

Either quickly publish a statement to the server
client.claim('All cats are gray')

Or: 1. construct a desired assertion (a graph of RDF triples) using rdflib
my_assertion = rdflib.Graph()
my_assertion.add((rdflib.URIRef('www.example.org/timbernerslee'),

(continues on next page)

33

nanopub, Release 1.2.11

(continued from previous page)

rdflib.RDF.type,
rdflib.FOAF.Person))

2. Make a Publication object with this assertion
publication = Publication.from_assertion(assertion_rdf=my_assertion)

3. Publish the Publication object. The URI at which it is published is returned.
publication_info = client.publish(publication)
print(publication_info)

13.2.2 Searching for nanopublications

from nanopub import NanopubClient

Create the client
client = NanopubClient()

Search for all nanopublications containing the text 'fair'
results = client.find_nanopubs_with_text('fair')
for result in results:

print(result)

13.2.3 Fetching nanopublications and inspecting them

from nanopub import NanopubClient

Create the client
client = NanopubClient()

Fetch the nanopublication at the specified URI
publication = client.fetch('http://purl.org/np/
→˓RApJG4fwj0szOMBMiYGmYvd5MCtRle6VbwkMJUb1SxxDM')

Print the RDF contents of the nanopublication
print(publication)

Iterate through all triples in the assertion graph
for s, p, o in publication.assertion:

print(s, p, o)

34 Chapter 13. Welcome to nanopub’s documentation!

PYTHON MODULE INDEX

n
nanopub.client, 25
nanopub.namespaces, 31
nanopub.publication, 29

35

nanopub, Release 1.2.11

36 Python Module Index

INDEX

A
assertion (nanopub.publication.Publication attribute),

29
AUTHOR (in module nanopub.namespaces), 31

C
claim() (nanopub.client.NanopubClient method), 25

F
fetch() (nanopub.client.NanopubClient method), 25
find_nanopubs_with_pattern()

(nanopub.client.NanopubClient method),
25

find_nanopubs_with_text()
(nanopub.client.NanopubClient method),
26

find_retractions_of()
(nanopub.client.NanopubClient method),
26

find_things() (nanopub.client.NanopubClient
method), 26

from_assertion() (nanopub.publication.Publication
class method), 29

H
HYCL (in module nanopub.namespaces), 31

I
introduces_concept (nanopub.publication.Publication

attribute), 29
is_test_publication

(nanopub.publication.Publication attribute),
29

M
module

nanopub.client, 25
nanopub.namespaces, 31
nanopub.publication, 29

N
nanopub.client

module, 25
nanopub.namespaces

module, 31
nanopub.publication

module, 29
NanopubClient (class in nanopub.client), 25
NP (in module nanopub.namespaces), 31
NPX (in module nanopub.namespaces), 31

O
ORCID (in module nanopub.namespaces), 31

P
PROV (in module nanopub.namespaces), 31
provenance (nanopub.publication.Publication at-

tribute), 29
pubinfo (nanopub.publication.Publication attribute), 29
Publication (class in nanopub.publication), 29
publish() (nanopub.client.NanopubClient method), 27

R
rdf (nanopub.publication.Publication attribute), 29
replace_in_rdf() (in module nanopub.publication),

30
retract() (nanopub.client.NanopubClient method), 27

S
signed_with_public_key

(nanopub.publication.Publication attribute),
29

source_uri (nanopub.publication.Publication at-
tribute), 29

37

	Different elements of a nanopublication
	Setup instructions
	Install nanopub library
	Nanopub-java dependency
	Java
	Installing java

	Setup for users new to python
	Setup your profile
	Stored profile
	RSA keys
	ORCID iD
	Introductory nanopublication

	The nanopub test server
	Test purl URIs do not point to the test server

	Publishing nanopublications
	Prerequisits for publishing
	Quickly publishing nanopublications using claim
	A simple recipe for publishing RDF triples

	Using the nanopublication’s namespace
	Using blank nodes
	Introducing a concept

	Setting publication info and provenance
	Specifying where the nanopublication is derived from
	Attributing the assertion to someone
	Specifying custom provenance triples
	Specifying custom publication info triples

	Retracting a nanopublication
	Retracting a nanopublication that is not yours
	Find retractions of a given nanopublication

	Searching the nanopub server
	Text search
	Triple pattern search
	Search on introduced concept
	Interpreting search results
	Returning retracted publications in search
	Filtering search results for a particular publication key

	Fetching nanopublications
	nanopub.client
	nanopub.publication
	nanopub.namespaces
	Welcome to nanopub’s documentation!
	Setup
	Quick Start
	Publishing nanopublications
	Searching for nanopublications
	Fetching nanopublications and inspecting them

	Python Module Index
	Index

